OpenCodePapers

visual-dialog-on-visual-dialog-v1-0-test-std

Visual Dialog
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeNDCG (x 100)MRR (x 100)R@1R@5R@10MeanModelNameReleaseDate
[]()78.745.7529.565.782.456.54Single
[]()77.9256.244.4568.983.785.41P1P2+Distill+Ensemble
[]()76.4356.3545.1768.1282.175.79Ensemble + Fine-tuning
[]()76.1756.4244.3270.2384.525.47ensemble, finetune
[]()76.1456.0544.7568.482.755.72VD-PCR
[]()75.3551.1738.962.8277.986.69Ensemble
Efficient Attention Mechanism for Visual Dialog that can Handle All the Interactions between Multiple Inputs✓ Link74.8852.1438.9266.680.656.53Ensemble + Finetune2019-11-26
[]()74.6262.6554.3770.7583.335.89bert-double-stream-finetuning
[]()74.4750.7437.9564.1280.06.28CE-finetuned, single model
[]()73.3649.2636.3562.4278.127.02
[]()73.1543.0727.8260.3876.557.422
[]()73.0848.3734.6562.9877.537.055_4
[]()73.0756.0344.268.4581.625.987
[]()72.9956.7345.4268.9281.736.01
[]()72.8549.0335.8862.8877.757.075-2
Ensemble of MRR and NDCG models for Visual Dialog✓ Link72.8369.9258.381.5589.63.842 Step: Factor Graph Attention + VD-Bert2021-04-15
[]()72.856.6744.8268.6781.95.981
[]()72.5849.4735.7764.1578.256.910
[]()72.4155.1143.2367.6579.776.55Disc, Dense, 4 Ensemble.
[]()72.3557.1945.370.1582.386.04shanshandu
[]()72.3357.1345.1769.9582.45.851
[]()72.3347.5433.563.2877.337.1420
[]()72.1670.4158.1783.8590.833.66Two-Step(refactor)
[]()71.9141.6625.8560.1274.678.3simple_test
[]()71.8256.3444.2269.6581.76.041
[]()70.0839.6125.6553.6270.129.015TS
[]()68.0863.9250.7879.5389.64.28Bert(two-stream)
[]()67.0970.9557.0788.4295.082.91Ensemble FGA + BERT
[]()64.7964.6251.8280.3589.954.29CARE(Single Model)
[]()64.4858.5744.2776.1586.425.13sdfsdaf
[]()64.0471.2458.2787.5594.452.96MRR ensemble (Naive)
[]()63.9468.1654.6784.9593.13.3CAF
[]()63.8767.553.8584.6793.253.32w/ VQA + CC, single model
[]()63.8767.553.8584.6793.253.32test1
[]()63.7567.4953.7585.0293.253.31sh101
[]()60.9166.6352.5284.192.273.41SCL_48
[]()60.3366.5352.6284.1292.53.4Transformer+2cons
[]()60.3164.9550.4883.1593.153.44single-model
[]()60.1964.2550.8880.9290.64.111
[]()59.6964.1450.6280.7789.834.18211
Multi-View Attention Network for Visual Dialog✓ Link59.3764.8451.4581.1290.653.97MVAN2020-04-29
[]()59.3366.251.6285.0593.73.25single model
[]()59.2364.5851.2580.9290.054.03gr
[]()59.062.6549.4878.188.354.5lkh(single-model)
[]()58.5963.750.379.4789.154.26lijunlin_7
[]()58.5661.8748.478.088.64.49wqedasd(single model)
[]()58.5165.751.7382.9791.973.68Bert2constraints
[]()58.4964.3150.880.889.654.11zxcdd
[]()58.2564.7951.3281.090.383.98jiuyigedian
[]()58.1964.4350.780.8390.184.13disc
[]()58.1463.3149.6880.4589.254.31lijunlin_9
Learning to Reason: End-to-End Module Networks for Visual Question Answering✓ Link58.158.844.1576.8886.884.4NMN2017-04-18
[]()57.8264.350.5881.2590.034.07zuizhong
[]()57.664.5749.7582.2391.673.67clean_wac_4freeze
Dual Attention Networks for Visual Reference Resolution in Visual Dialog✓ Link57.5963.249.6379.7589.354.3DAN2019-02-25
[]()57.3947.0336.9356.4765.813.3mvan_len40_test
Image-Question-Answer Synergistic Network for Visual Dialog57.3262.2047.9080.434.17Synergistic2019-02-26
Factor Graph Attention✓ Link57.2069.355.6586.7394.053.145xFGA (F-RCNNx101)2019-04-11
Making History Matter: History-Advantage Sequence Training for Visual Dialog57.1764.2250.8880.6389.454.20HACAN2019-02-25
Iterative Context-Aware Graph Inference for Visual Dialog✓ Link56.6463.4949.8580.6390.154.11CAG2020-04-05
[]()56.3862.6848.680.189.484.22kbgn_disc_5
DualVD: An Adaptive Dual Encoding Model for Deep Visual Understanding in Visual Dialogue✓ Link56.3263.2349.2580.2389.74.11DualVD2019-11-17
[]()55.9463.349.1881.089.64.2ERIC666
[]()55.8862.2447.5880.4589.724.09eightepoch
Recursive Visual Attention in Visual Dialog✓ Link55.5963.0349.0380.4089.834.18RVA2018-12-06
[]()55.2162.5647.4581.5592.03.82single-model
Visual Coreference Resolution in Visual Dialog using Neural Module Networks✓ Link54.7061.5047.5578.1088.804.40CorefNMN (ResNet-152)2018-09-06
[]()53.259.9646.3576.7886.485.12jkl
[]()53.1945.8435.954.9761.720.71trainval_ch_9
Reasoning Visual Dialogs with Structural and Partial Observations✓ Link52.8261.3747.3377.9887.834.57GNN2019-04-11
[]()52.5761.0946.8378.2287.424.65DLC-4
[]()51.8755.6942.770.1779.727.87gat_disc_relto_4
[]()49.9460.1145.677.5387.94.7adasd
[]()47.5153.1941.465.8574.1511.96gat_disc_3
Visual Dialog✓ Link47.555.540.9872.3083.305.92MN-QIH-D2016-11-26
[]()46.7553.336.8373.4583.15.91paratraining1epoch
Visual Dialog✓ Link45.554.239.9370.4581.506.41HRE-QIH-D2016-11-26
Visual Dialog✓ Link45.355.440.9572.4582.835.95MN-QIH-D2016-11-26
[]()23.029.9716.6243.5853.0522.05czczx
[]()11.847.253.027.2212.2249.61qqhe