OpenCodePapers

question-answering-on-squad11

Question Answering
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeEMF1Hardware BurdenExact MatchOperations per network passModelNameReleaseDate
[]()90.62295.719{ANNA} (single model)
[]()90.20295.379LUKE (single model)
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention✓ Link90.20295.379LUKE (single model)2020-10-02
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention✓ Link90.2LUKE2020-10-02
[]()89.89895.080XLNet (single model)
XLNet: Generalized Autoregressive Pretraining for Language Understanding✓ Link89.89895.08046449GXLNet (single model)2019-06-19
[]()89.85694.903XLNET-123++ (single model)
[]()89.70994.859XLNET-123+ (single model)
[]()89.64694.930XLNET-123 (single model)
[]()88.91294.584Unnamed submission by NMC
[]()88.91294.584BERTSP (single model)
[]()88.83994.635SpanBERT (single model)
SpanBERT: Improving Pre-training by Representing and Predicting Spans✓ Link88.894.6586GSpanBERT (single model)2019-07-24
[]()88.65094.393BERT+WWM+MT (single model)
[]()87.46593.294Tuned BERT-1seq Large Cased (single model)
LinkBERT: Pretraining Language Models with Document Links✓ Link87.4592.7LinkBERT (large)2022-03-29
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding✓ Link87.43393.160BERT (ensemble)2018-10-11
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding✓ Link87.493.2BERT-LARGE (Ensemble+TriviaQA)2018-10-11
[]()86.94092.641ATB (single model)
[]()86.52192.617Tuned BERT Large Cased (single model)
[]()86.45892.645BERT+MT (single model)
[]()85.94492.425Knowledge-enhanced BERT (single model)
[]()85.94492.425KT-NET (single model)
[]()85.43091.976ST_bl
[]()85.35691.202nlnet (ensemble)
[]()85.33591.807EL-BERT (single model)
[]()85.31491.756BISAN (single model)
[]()85.12591.623BERT+Sparse-Transformer
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding✓ Link85.08391.835BERT (single model)2018-10-11
[]()84.97892.019DPN (single model)
[]()84.92691.932BERT-uncased (single model)
[]()84.40290.561WD (single model)
[]()84.32891.281Original BERT Large Cased (single model)
[]()83.98289.796MARS (ensemble)
[]()83.93090.613Common-sense Governed BERT-123 (single model)
[]()83.80490.429WD1 (single model)
[]()83.46890.133nlnet (single model)
[]()83.42689.218Pytalk + Stanza + BERT (single model)
[]()82.84988.764Reinforced Mnemonic Reader + A2D (ensemble model)
[]()82.68189.379BERT-Base mod (single model)
[]()82.65088.493r-net+ (ensemble)
[]()82.48289.281Hybrid AoA Reader (ensemble)
[]()82.47189.306QANet (single)
[]()82.44088.607SLQA+ (ensemble)
Reinforced Mnemonic Reader for Machine Reading Comprehension✓ Link82.28388.533Reinforced Mnemonic Reader (ensemble model)2017-05-08
[]()82.13688.126r-net (ensemble)
[]()82.06288.947BERT (single model)
[]()81.79088.163AttentionReader+ (ensemble)
[]()81.58088.948MMIPN
Information Theoretic Representation Distillation✓ Link81.588.5BERT - 6 Layers2021-12-01
[]()81.49687.557KACTEIL-MRC(GF-Net+) (ensemble)
[]()81.40188.122Reinforced Mnemonic Reader + A2D + DA (single model)
[]()81.30788.909ARSG-BERT (single model)
[]()81.04587.999BERT-COMPOUND-DSS (single model)
Deep contextualized word representations✓ Link81.00387.432BiDAF + Self Attention + ELMo (ensemble)2018-02-15
[]()81.00387.432BiDAF + Self Attention + ELMo (ensemble)
[]()80.72087.758BERT-COMPOUND (single model)
[]()80.66788.169mBERT + Task Adapter (Single)
[]()80.61587.311AVIQA+ (ensemble)
[]()80.48987.454Reinforced Mnemonic Reader + A2D (single model)
[]()80.43687.021SLQA+
[]()80.43686.912{EAZI} (ensemble)
[]()80.42686.912EAZI+ (ensemble)
[]()80.16486.721DNET (ensemble)
[]()80.02787.288Hybrid AoA Reader (single model)
[]()79.99686.711BiDAF + Self Attention + ELMo + A2D (single model)
[]()79.90186.536r-net+ (single model)
[]()79.85988.263batch (single model)
A Multi-Stage Memory Augmented Neural Network for Machine Reading Comprehension79.69286.727MAMCN+ (single model)2018-07-01
[]()79.69286.727MAMCN+ (single model)
Stochastic Answer Networks for Machine Reading Comprehension✓ Link79.60886.496SAN (ensemble model)2017-12-10
[]()79.59787.374BERT-INDEPENDENT-DSS-FILTERED (single model)
Reinforced Mnemonic Reader for Machine Reading Comprehension✓ Link79.54586.654Reinforced Mnemonic Reader (single model)2017-05-08
[]()79.19986.590SLQA+ (single model)
[]()79.08386.450Interactive AoA Reader+ (ensemble)
[]()79.08386.288MIR-MRC(F-Net) (single model)
[]()79.08386.288KACTEIL-MRC(GF-Net+Distillation) (single model)
[]()79.08386.288KACTEIL-MRC (GF-Net+Distillation)
[]()79.03186.006MDReader
FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension✓ Link78.97886.016FusionNet (ensemble)2017-11-16
DCN+: Mixed Objective and Deep Residual Coattention for Question Answering✓ Link78.85285.996DCN+ (ensemble)2017-10-31
[]()78.66485.780KACTEIL-MRC(GF-Net+) (single model)
[]()78.66485.780KACTEIL-MRC (GF-Net+)
[]()78.65386.663BERT-INDEPENDENT (single model)
Deep contextualized word representations✓ Link78.5885.833BiDAF + Self Attention + ELMo (single model)2018-02-15
[]()78.58085.833BiDAF + Self Attention + ELMo (single model)
[]()78.49685.469aviqa (ensemble)
[]()78.40185.724KakaoNet (single model)
[]()78.32885.682SLQA(ensemble)
[]()78.32885.682SLQA (ensemble)
MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension78.23485.344MEMEN (single model)2017-07-28
MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension78.23485.344MEMEN (single model)2017-07-28
[]()78.22385.535BiDAF++ with pair2vec (single model)
[]()78.17185.543MDReader0
[]()78.08785.348test
[]()77.84585.297Interactive AoA Reader (ensemble)
Information Theoretic Representation Distillation✓ Link77.785.8BERT - 3 Layers2021-12-01
[]()77.64684.905DNET (single model)
Contextualized Word Representations for Reading Comprehension✓ Link77.58384.163RaSoR + TR + LM (single model)2017-12-10
[]()77.57384.858BiDAF++ (single model)
[]()77.34284.925AttentionReader+ (single)
[]()77.23784.466Jenga (ensemble)
[]()77.09083.931{gqa} (single model)
Phase Conductor on Multi-layered Attentions for Machine Comprehension76.99684.630Conductor-net (ensemble)2017-10-28
[]()76.85984.739MARS (single model)
Stochastic Answer Networks for Machine Reading Comprehension✓ Link76.82884.396SAN (single model)2017-12-10
[]()76.77584.491VS^3-NET (single model)
[]()76.46184.265r-net (single model)
Gated Self-Matching Networks for Reading Comprehension and Question Answering76.46184.265r-net (single model)2017-07-01
[]()76.24084.599FRC (single model)
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension✓ Link76.284.6QANet + data augmentation ×32018-04-23
[]()76.14683.991Conductor-net (ensemble)
Explicit Utilization of General Knowledge in Machine Reading Comprehension76.12583.538KAR (single model)2018-09-10
[]()75.98983.475smarnet (ensemble)
FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension✓ Link75.96883.900FusionNet (single model)2017-11-16
[]()75.92683.305AVIQA-v2 (single model)
[]()75.82183.843Interactive AoA Reader+ (single model)
Contextualized Word Representations for Reading Comprehension✓ Link75.78983.261RaSoR + TR (single model)2017-12-10
MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension75.37082.658MEMEN (ensemble)2017-07-28
[]()75.26582.769Mixed model (ensemble)
[]()75.22382.716two-attention-self-attention (ensemble)
[]()75.03483.405Kbs (single model)
ReasoNet: Learning to Stop Reading in Machine Comprehension75.03482.552ReasoNet (ensemble)2016-09-17
EfficientQA : a RoBERTa Based Phrase-Indexed Question-Answering System74.983.1EfficientQA 125M2021-01-06
DCN+: Mixed Objective and Deep Residual Coattention for Question Answering✓ Link74.86682.806DCN+ (single model)2017-10-31
[]()74.60482.501eeAttNet (single model)
[]()74.48982.815SLQA (single model)
Phase Conductor on Multi-layered Attentions for Machine Comprehension74.40582.742Conductor-net (single model)2017-10-28
Reinforced Mnemonic Reader for Machine Reading Comprehension✓ Link74.26882.371Mnemonic Reader (ensemble)2017-05-08
[]()74.12182.342S^3-Net (ensemble)
Structural Embedding of Syntactic Trees for Machine Comprehension74.09081.761SEDT (ensemble model)2017-03-02
[]()74.08081.665SSAE (ensemble)
Multi-Perspective Context Matching for Machine Comprehension✓ Link73.76581.257Multi-Perspective Matching (ensemble)2016-12-13
Bidirectional Attention Flow for Machine Comprehension✓ Link73.74481.525BiDAF (ensemble)2016-11-05
Structural Embedding of Syntactic Trees for Machine Comprehension73.72381.530SEDT+BiDAF (ensemble)2017-03-02
[]()73.63981.931Interactive AoA Reader (single model)
[]()73.30381.754Jenga (single model)
Phase Conductor on Multi-layered Attentions for Machine Comprehension73.24081.933Conductor-net (single)2017-10-28
Exploring Question Understanding and Adaptation in Neural-Network-Based Question Answering73.01081.517jNet (ensemble)2017-03-14
[]()72.75881.001T-gating (ensemble)
[]()72.60081.011two-attention-self-attention (single model)
[]()72.59081.415Conductor-net (single)
[]()72.48580.550AVIQA (single model)
Simple and Effective Multi-Paragraph Reading Comprehension✓ Link72.13981.048BiDAF + Self Attention (single model)2017-10-29
[]()71.90881.023S^3-Net (single model)
[]()71.89879.989QFASE
[]()71.69880.462attention+self-attention (single model)
Dynamic Coattention Networks For Question Answering✓ Link71.62580.383Dynamic Coattention Networks (ensemble)2016-11-05
Smarnet: Teaching Machines to Read and Comprehend Like Human71.41580.160smarnet (single model)2017-10-08
Simple Recurrent Units for Highly Parallelizable Recurrence✓ Link71.480.24GSRU2017-09-08
[]()71.37379.725AttReader (single)
Learned in Translation: Contextualized Word Vectors✓ Link71.379.9DCN + Char + CoVe2017-08-01
[]()71.01679.835M-NET (single)
Reinforced Mnemonic Reader for Machine Reading Comprehension✓ Link70.99580.146Mnemonic Reader (single model)2017-05-08
[]()70.98579.939MAMCN (single model)
Making Neural QA as Simple as Possible but not Simpler✓ Link70.84978.857FastQAExt2017-03-14
Learning Recurrent Span Representations for Extractive Question Answering✓ Link70.84978.741RaSoR (single model)2016-11-04
Reading Wikipedia to Answer Open-Domain Questions✓ Link70.73379.353Document Reader (single model)2017-03-31
Ruminating Reader: Reasoning with Gated Multi-Hop Attention70.63979.456Ruminating Reader (single model)2017-04-24
Exploring Question Understanding and Adaptation in Neural-Network-Based Question Answering70.60779.821jNet (single model)2017-03-14
ReasoNet: Learning to Stop Reading in Machine Comprehension70.55579.364ReasoNet (single model)2016-09-17
Multi-Perspective Context Matching for Machine Comprehension✓ Link70.38778.784Multi-Perspective Matching (single model)2016-12-13
[]()69.60078.236SimpleBaseline (single model)
[]()69.44378.358SSR-BiDAF
Structural Embedding of Syntactic Trees for Machine Comprehension68.47877.971SEDT+BiDAF (single model)2017-03-02
Making Neural QA as Simple as Possible but not Simpler✓ Link68.43677.070FastQA2017-03-14
[]()68.33177.783PQMN (single model)
Structural Embedding of Syntactic Trees for Machine Comprehension68.16377.527SEDT (single model)2017-03-02
[]()68.13277.569T-gating (single model)
Bidirectional Attention Flow for Machine Comprehension✓ Link67.97477.323BiDAF (single model)2016-11-05
Machine Comprehension Using Match-LSTM and Answer Pointer✓ Link67.90177.022Match-LSTM with Ans-Ptr (Boundary) (ensemble)2016-08-29
A Fully Attention-Based Information Retriever✓ Link67.74477.605FABIR2018-10-22
[]()67.61877.151AllenNLP BiDAF (single model)
[]()67.54476.429BIDAF-COMPOUND-DSS (single model)
[]()67.50276.786Iterative Co-attention Network
[]()66.52775.787newtest
[]()66.51676.349BIDAF-INDEPENDENT-DSS (single model)
Dynamic Coattention Networks For Question Answering✓ Link66.23375.896Dynamic Coattention Networks (single model)2016-11-05
[]()65.16374.555BIDAF-COMPOUND (single model)
[]()64.93274.594BIDAF-INDEPENDENT (single model)
Machine Comprehension Using Match-LSTM and Answer Pointer✓ Link64.74473.743Match-LSTM with Bi-Ans-Ptr (Boundary)2016-08-29
[]()64.43973.921Unnamed submission by ravioncodalab
Learning to Compute Word Embeddings On the Fly64.08373.056OTF dict+spelling (single)2017-06-01
[]()63.30673.463Attentive CNN context with LSTM
Learning to Compute Word Embeddings On the Fly62.89772.016OTF spelling (single)2017-06-01
Learning to Compute Word Embeddings On the Fly62.60471.968OTF spelling+lemma (single)2017-06-01
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension62.49970.956Dynamic Chunk Reader2016-10-31
Words or Characters? Fine-grained Gating for Reading Comprehension✓ Link62.44673.327Fine-Grained Gating2016-11-06
[]()61.14571.389RQA+IDR (single model)
Harvesting and Refining Question-Answer Pairs for Unsupervised QA✓ Link61.14571.389RQA+IDR (single model)2020-05-06
Machine Comprehension Using Match-LSTM and Answer Pointer✓ Link60.47470.695Match-LSTM with Ans-Ptr (Boundary)2016-08-29
[]()59.05869.436Unnamed submission by Will_Wu
[]()55.82765.467RQA (single model)
Harvesting and Refining Question-Answer Pairs for Unsupervised QA✓ Link55.82765.467RQA (single model)2020-05-06
Machine Comprehension Using Match-LSTM and Answer Pointer✓ Link54.50567.748Match-LSTM with Ans-Ptr (Sentence)2016-08-29
[]()53.69864.036UQA (single model)
[]()52.54462.780Unnamed submission by jinhyuklee
[]()52.53362.757Unnamed submission by minjoon
[]()47.34156.436UnsupervisedQA V1 (ensemble)
[]()44.21554.723UnsupervisedQA V1 (single model)
[]()12.27313.211QANet (single model)
[]()0.0006.907
[]()0.0000.000QANet (ensemble)
[]()0.0000.000superman-new-des
[]()0.0000.000WAHnGREA
[]()0.0000.000superman-des
[]()0.0000.000XLNet-deep (ensemble)
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention✓ Link95.4LUKE 483M2020-10-02
TextBox 2.0: A Text Generation Library with Pre-trained Language Models✓ Link93.0486.44BART (TextBox 2.0)2022-12-26
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding✓ Link91.8BERT-LARGE (Single+TriviaQA)2018-10-11
A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes91.58BERT-Large 32k batch size with AdamW2021-02-12
DyREx: Dynamic Query Representation for Extractive Question Answering✓ Link91.01DyREX2022-10-26
Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language✓ Link84.6RuBERT2019-05-17