OpenCodePapers

node-property-prediction-on-ogbn-proteins

Node Property Prediction
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeExt. dataTest ROC-AUCValidation ROC-AUCNumber of paramsModelNameReleaseDate
Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias✓ LinkYes0.8942 ± 0.00070.9527 ± 0.0007664233700LD+GAT2023-09-26
GIPA: A General Information Propagation Algorithm for Graph Learning✓ LinkNo0.8917 ± 0.00070.9472 ± 0.002017438716GIPA(Wide&Deep)2023-01-19
Adaptive Graph Diffusion Networks✓ LinkNo0.8865 ± 0.00130.9418 ± 0.00058605486AGDN2020-12-30
Training Graph Neural Networks with 1000 Layers✓ LinkNo0.8824 ± 0.00150.9450 ± 0.000868471608RevGNN-Wide2021-06-14
Network In Graph Neural NetworkNo0.8809 ± 0.00160.9375 ± 0.001911740552GAT+BOT+NGNN2021-11-23
Training Graph Neural Networks with 1000 Layers✓ LinkNo0.8774 ± 0.00130.9326 ± 0.000620031384RevGNN-Deep2021-06-14
Bag of Tricks for Node Classification with Graph Neural Networks✓ LinkNo0.8765 ± 0.00080.9280 ± 0.00082484192GAT+BoT2021-03-24
Graph Attention Networks✓ LinkNo0.8711 ± 0.00070.9217 ± 0.00116360470GAT + labels + node2vec2017-10-30
GIPA: General Information Propagation Algorithm for Graph Learning✓ LinkNo0.8700 ± 0.00100.9187 ± 0.00034831056GIPA2021-05-13
Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification✓ LinkNo0.8691 ± 0.00180.9258 ± 0.00091959984UniMP+CrossEdgeFeat2020-09-08
Bag of Tricks for Node Classification with Graph Neural Networks✓ LinkNo0.8682 ± 0.00210.9194 ± 0.00032475232GAT+EdgeFeatureAtt2021-03-24
Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification✓ LinkNo0.8642 ± 0.00080.9175 ± 0.00061909104UniMP2020-09-08
Robust Optimization as Data Augmentation for Large-scale Graphs✓ LinkNo0.8596 ± 0.00270.9132 ± 0.00222374568DeeperGCN+FLAG2020-10-19
DeeperGCN: All You Need to Train Deeper GCNs✓ LinkNo0.8580 ± 0.00170.9106 ± 0.00162374568DeeperGCN2020-06-13
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification✓ LinkNo0.8501 ± 0.00460.9067 ± 0.00432943472GAT2024-06-13
[]()No0.8496 ± 0.00280.8971 ± 0.00112374456DeepGCN
[]()No0.8436 ± 0.00650.8973 ± 0.0057538544MWE-DGCN
DeeperGCN: All You Need to Train Deeper GCNs✓ LinkNo0.8251 ± 0.00430.8656 ± 0.0037487436GEN + FLAG + node2vec2020-06-13
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification✓ LinkNo0.8221 ± 0.00320.8831 ± 0.00442444896GraphSAGE2024-06-13
[]()No0.7916 ± 0.00860.8256 ± 0.005790608DVCNN
Bandit Samplers for Training Graph Neural Networks✓ LinkNo0.7825 ± 0.0035Please tell us316754GeniePath-BS2020-06-10
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs✓ LinkNo0.7803 ± 0.0073Please tell usPlease tell usGaAN2018-03-20
Inductive Representation Learning on Large Graphs✓ LinkNo0.7768 ± 0.00200.8334 ± 0.0013193136GraphSAGE2017-06-07
Semi-Supervised Classification with Graph Convolutional Networks✓ LinkNo0.7251 ± 0.00350.7921 ± 0.001896880GCN2016-09-09
Open Graph Benchmark: Datasets for Machine Learning on Graphs✓ LinkNo0.7204 ± 0.00480.7706 ± 0.001496880MLP2020-05-02
node2vec: Scalable Feature Learning for Networks✓ LinkNo0.6881 ± 0.00650.7007 ± 0.005317094000Node2vec2016-07-03