OpenCodePapers

node-property-prediction-on-ogbn-mag

Node Property Prediction
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeTest AccuracyExt. dataValidation AccuracyNumber of paramsModelNameReleaseDate
[]()0.8789 ± 0.0024No0.8836 ± 0.00287720368LDHGNN
Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks✓ Link0.7956 ± 0.0047No0.8021 ± 0.00207720368CLGNN2024-02-29
[]()0.5794 ± 0.0018No0.5997 ± 0.00128469021HGAMLP+LP+MS(LINE embs)
Long-range Meta-path Search on Large-scale Heterogeneous Graphs✓ Link0.5784 ± 0.0022No0.5951 ± 0.000716470044LMSPS (w/o embs)2023-07-17
Efficient Heterogeneous Graph Learning via Random Projection✓ Link0.5773 ± 0.0012No0.5973 ± 0.00087720368RpHGNN+LP+CR (LINE embs)2023-10-23
Long-range Meta-path Search on Large-scale Heterogeneous Graphs✓ Link0.5767 ± 0.0015No0.5902 ± 0.001616470044LMSPS(w/o ComplEx embs)2023-07-17
Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials✓ Link0.5752 ± 0.0011No0.5943 ± 0.00154852434PSHGCN (ComplEx embs)2023-05-31
Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials✓ Link0.5752 ± 0.0011No0.5943 ± 0.00154852434PSHGCN2023-05-31
Long-range Meta-path Search on Large-scale Heterogeneous Graphs✓ Link0.5739 ± 0.0012No0.5888 ± 0.001513177884LDMLP(w/o ComplEx embs)2023-07-17
Simple and Efficient Heterogeneous Graph Neural Network✓ Link0.5719 ± 0.0012No0.5917 ± 0.00098371231SeHGNN (ComplEx embs)2022-07-06
Simple and Efficient Heterogeneous Graph Neural Network✓ Link0.5671 ± 0.0014No0.5870 ± 0.00088371231SeHGNN2022-07-06
SCR: Training Graph Neural Networks with Consistency Regularization✓ Link0.5631 ± 0.0021No0.5734 ± 0.00356734882NARS-GAMLP+RLU+SCR2021-12-08
Graph Attention Multi-Layer Perceptron✓ Link0.5590 ± 0.0027No0.5702 ± 0.00416734882NARS-GAMLP+RLU2022-06-09
[]()0.5590 ± 0.0027No0.5702 ± 0.00416734882NARS-GAMLP+RLU
SCR: Training Graph Neural Networks with Consistency Regularization✓ Link0.5451 ± 0.0019No0.5590 ± 0.00286734882NARS-GAMLP+SCR-m2021-12-08
Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced training✓ Link0.5440 ± 0.0015No0.5591 ± 0.00173846330NARS_SAGN+SLE2021-04-19
SCR: Training Graph Neural Networks with Consistency Regularization✓ Link0.5432 ± 0.0018No0.5654 ± 0.00216734882NARS-GAMLP+SCR2021-12-08
Graph Attention Multi-Layer Perceptron✓ Link0.5396 ± 0.0018No0.5548 ± 0.00086734882NARS-GAMLP2022-06-09
[]()0.5396 ± 0.0018No0.5548 ± 0.00086734882NARS-GAMLP
Label-Enhanced Graph Neural Network for Semi-supervised Node Classification✓ Link0.5378 ± 0.0016No0.5528 ± 0.00135147997LEGNN + AS-Train2022-05-31
Label-Enhanced Graph Neural Network for Semi-supervised Node Classification✓ Link0.5276 ± 0.0014No0.5443 ± 0.00095147997LEGNN2022-05-31
Scalable Graph Neural Networks for Heterogeneous Graphs✓ Link0.5240 ± 0.0016No0.5372 ± 0.00094130149NARS2020-11-19
Heterogeneous Graph Representation Learning with Relation Awareness✓ Link0.5204 ± 0.0026No0.5361 ± 0.00225638053R-HGNN2021-05-24
Residual Network and Embedding Usage: New Tricks of Node Classification with Graph Convolutional Networks✓ Link0.5109 ± 0.0038No0.5295 ± 0.0042309777252R-GSN + metapath2vec2021-05-18
Hybrid Micro/Macro Level Convolution for Heterogeneous Graph Learning✓ Link0.5045 ± 0.0017No0.5300 ± 0.00182850405HGConv2020-12-29
Modeling Relational Data with Graph Convolutional Networks✓ Link0.5032 ± 0.0037No0.5182 ± 0.0041154373028R-GSN2017-03-17
Heterogeneous Graph Transformer✓ Link0.4982 ± 0.0013No0.5124 ± 0.004626877657HGT (TransE embs)2020-03-03
GraphSAINT: Graph Sampling Based Inductive Learning Method✓ Link0.4966 ± 0.0022No0.5066 ± 0.0017309764724GraphSAINT + metapath2vec2019-07-10
Heterogeneous Graph Transformer✓ Link0.4927 ± 0.0061No0.4989 ± 0.004721173389HGT (LADIES Sample)2020-03-03
GraphSAINT: Graph Sampling Based Inductive Learning Method✓ Link0.4751 ± 0.0022No0.4837 ± 0.0026154366772GraphSAINT (R-GCN aggr)2019-07-10
Robust Optimization as Data Augmentation for Large-scale Graphs✓ Link0.4737 ± 0.0048No0.4835 ± 0.0036154366772R-GCN+FLAG2020-10-19
Inductive Representation Learning on Large Graphs✓ Link0.4678 ± 0.0067No0.4761 ± 0.0068154366772NeighborSampling (R-GCN aggr)2017-06-07
SIGN: Scalable Inception Graph Neural Networks✓ Link0.4046 ± 0.0012No0.4068 ± 0.00103724645SIGN2020-04-23
Modeling Relational Data with Graph Convolutional Networks✓ Link0.3977 ± 0.0046No0.4084 ± 0.0041154366772Full-batch R-GCN2017-03-17
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks✓ Link0.3732 ± 0.0037No0.3840 ± 0.0031154366772ClusterGCN (R-GCN aggr)2019-05-20
metapath2vec: Scalable Representation Learning for Heterogeneous Networks✓ Link0.3544 ± 0.0036No0.3506 ± 0.001794479069MetaPath2vec2017-08-01
[]()0.3544 ± 0.0036No0.3506 ± 0.001794479069MetaPath2vec
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages✓ Link0.2761 ± 0.0018No0.2646 ± 0.0013278202CoLinkDistMLP2021-06-16
Open Graph Benchmark: Datasets for Machine Learning on Graphs✓ Link0.2692 ± 0.0026No0.2626 ± 0.0016188509MLP2020-05-02