OpenCodePapers

node-classification-on-pubmed-60-20-20-random

Node Classification
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCode1:1 AccuracyModelNameReleaseDate
GNNDLD: Graph Neural Network with Directional Label Distribution91.95±0.19 GNNDLD2024-02-26
Neighborhood Homophily-Guided Graph Convolutional Network✓ Link91.56 ± 0.50NHGCN2023-10-21
Revisiting Heterophily For Graph Neural Networks✓ Link91.44 ± 0.59ACM-Snowball-32022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link91.31 ± 0.6ACMII-Snowball-32022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.96 ± 0.62ACMII-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.81 ± 0.52ACM-Snowball-22022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.74 ± 0.5ACMII-GCN2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.66 ± 0.47ACM-GCN2022-10-14
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs✓ Link90.64 ± 0.46%Graph-MLP + SAF2023-06-15
Revisiting Heterophily For Graph Neural Networks✓ Link90.63 ± 0.56ACMII-GCN++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.56 ± 0.39ACMII-Snowball-22022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.46 ± 0.69ACM-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.39 ± 0.33ACM-GCN++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.18 ± 0.51ACM-GCNII*2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.12 ± 0.4ACM-GCNII2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link90.09 ± 0.68GCN+JK2022-10-14
Geom-GCN: Geometric Graph Convolutional Networks✓ Link90.05Geom-GCN*2020-02-13
Beyond Low-frequency Information in Graph Convolutional Networks✓ Link89.98 ± 0.54FAGCN2021-01-04
Simple and Deep Graph Convolutional Networks✓ Link89.98 ± 0.52GCNII*2020-07-04
Node-oriented Spectral Filtering for Graph Neural Networks✓ Link89.89±0.68NFGNN2022-12-07
Simple and Deep Graph Convolutional Networks✓ Link89.8 ± 0.3GCNII2020-07-04
Revisiting Heterophily For Graph Neural Networks✓ Link89.15 ± 0.87 GAT+JK2022-10-14
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks✓ Link89.04 ± 0.49Snowball-22019-06-05
Semi-Supervised Classification with Graph Convolutional Networks✓ Link88.9 ± 0.32GCN2016-09-09
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks✓ Link88.8 ± 0.82Snowball-32019-06-05
Revisiting Heterophily For Graph Neural Networks✓ Link88.79 ± 0.5ACM-SGC-22022-10-14
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation✓ Link88.48 ± 0.41BernNet2021-06-21
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs✓ Link87.78 ± 0.28H2GCN2020-06-20
Revisiting Heterophily For Graph Neural Networks✓ Link87.75 ± 0.88ACM-SGC-12022-10-14
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing✓ Link87.04 ± 4.10MixHop2019-04-30
Inductive Representation Learning on Large Graphs✓ Link86.85 ± 0.11GraphSAGE2017-06-07
Revisiting Heterophily For Graph Neural Networks✓ Link86.43 ± 0.13MLP-22022-10-14
Simplifying Graph Convolutional Networks✓ Link85.5 ± 0.76SGC-12019-02-19
Simplifying Graph Convolutional Networks✓ Link85.36 ± 0.52SGC-22019-02-19
Adaptive Universal Generalized PageRank Graph Neural Network✓ Link85.07 ± 0.09GPRGNN2020-06-14
Predict then Propagate: Graph Neural Networks meet Personalized PageRank✓ Link85.02 ± 0.09APPNP2018-10-14
Graph Attention Networks✓ Link83.28 ± 0.12GAT2017-10-30