OpenCodePapers

node-classification-on-non-homophilic-6

Node ClassificationNode Classification on Non-Homophilic (Heterophilic) Graphs
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCode1:1 AccuracyModelNameReleaseDate
Revisiting Heterophily For Graph Neural Networks✓ Link67.5±0.53ACMII-GCN+++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link67.44±0.31ACMII-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link67.4±0.44ACM-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link67.3±0.48ACM-GCN++2022-10-14
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs✓ Link67.22±0.90H2GCN2020-06-20
Predict then Propagate: Graph Neural Networks meet Personalized PageRank✓ Link67.21±0.56APPNP2018-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link67.15±0.41ACMII-GCN2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link67.01±0.38ACM-GCN2022-10-14
Adaptive Universal Generalized PageRank Graph Neural Network✓ Link66.90±0.50GPRGNN2020-06-14
Beyond Low-frequency Information in Graph Convolutional Networks✓ Link66.86±0.53FAGCN2021-01-04
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing✓ Link66.80±0.58MixHop2019-04-30
Revisiting Heterophily For Graph Neural Networks✓ Link66.67±0.56ACM-SGC-12022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link66.6±0.57ACM-GCNII*2022-10-14
New Benchmarks for Learning on Non-Homophilous Graphs✓ Link66.55±0.72MLP-22021-04-03
Revisiting Heterophily For Graph Neural Networks✓ Link66.53±0.57ACM-SGC-22022-10-14
Simple and Deep Graph Convolutional Networks✓ Link66.42±0.56GCNII*2020-07-04
Revisiting Heterophily For Graph Neural Networks✓ Link66.39±0.56ACM-GCNII2022-10-14
Simple and Deep Graph Convolutional Networks✓ Link66.38±0.45GCNII2020-07-04
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks✓ Link64.60±0.57C&S(1hop)2020-10-27
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks✓ Link64.52±0.62C&S(2hop)2020-10-27
Semi-Supervised Classification with Graph Convolutional Networks✓ Link62.23±0.53GCN2016-09-09
Graph Attention Networks✓ Link61.09±0.77GAT2017-10-30
New Benchmarks for Learning on Non-Homophilous Graphs✓ Link60.99±0.14GCN+JK2021-04-03
Simplifying Graph Convolutional Networks✓ Link59.73±0.12SGC-12019-02-19
New Benchmarks for Learning on Non-Homophilous Graphs✓ Link59.66±0.92GAT+JK2021-04-03
New Benchmarks for Learning on Non-Homophilous Graphs✓ Link57.71±0.36LINK2021-04-03
New Benchmarks for Learning on Non-Homophilous Graphs✓ Link56.96±0.26LProp (2hop)2021-04-03
New Benchmarks for Learning on Non-Homophilous Graphs✓ Link56.50±0.41L Prop (1hop)2021-04-03