OpenCodePapers

node-classification-on-non-homophilic-2

Node ClassificationNode Classification on Non-Homophilic (Heterophilic) Graphs
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCode1:1 AccuracyModelNameReleaseDate
Revisiting Heterophily For Graph Neural Networks✓ Link96.56 ± 2ACM-GCN++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link95.74 ± 2.22ACM-Snowball-22022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link95.41 ± 2.82ACMII-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link95.25 ± 1.55ACMII-Snowball-22022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link95.08 ± 2.07ACMII-GCN2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link94.92 ± 2.79ACM-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link94.75 ± 2.41ACM-Snowball-32022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link94.75 ± 3.09ACMII-Snowball-32022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link94.75 ± 2.91ACMII-GCN++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link93.61 ± 1.55ACM-SGC-12022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link93.44 ± 2.54ACM-SGC-22022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link93.28 ± 2.79ACM-GCNII*2022-10-14
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation✓ Link93.12 ± 0.65BernNet2021-06-21
Adaptive Universal Generalized PageRank Graph Neural Network✓ Link92.92 ± 0.61GPRGNN2020-06-14
Revisiting Heterophily For Graph Neural Networks✓ Link92.46 ± 1.97ACM-GCNII2022-10-14
Adaptive Universal Generalized PageRank Graph Neural Network✓ Link92.26 ± 0.71MLP-22020-06-14
Predict then Propagate: Graph Neural Networks meet Personalized PageRank✓ Link91.18 ± 0.70APPNP2018-10-14
Beyond Low-frequency Information in Graph Convolutional Networks✓ Link88.85 ± 4.39FAGCN2021-01-04
Simple and Deep Graph Convolutional Networks✓ Link88.52 ± 3.02GCNII*2020-07-04
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs✓ Link85.90 ± 3.53H2GCN2020-06-20
Simplifying Graph Convolutional Networks✓ Link83.28 ± 5.43SGC-12019-02-19
Semi-Supervised Classification with Graph Convolutional Networks✓ Link83.11 ± 3.2GCN2016-09-09
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks✓ Link83.11 ± 3.2Snowball-22019-06-05
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks✓ Link83.11 ± 3.2Snowball-32019-06-05
Simple and Deep Graph Convolutional Networks✓ Link82.46 ± 4.58GCNII2020-07-04
Simplifying Graph Convolutional Networks✓ Link81.31 ± 3.3SGC-22019-02-19
Revisiting Heterophily For Graph Neural Networks✓ Link80.66 ± 1.91GCN+JK2022-10-14
Inductive Representation Learning on Large Graphs✓ Link79.03 ± 1.20GraphSAGE2017-06-07
Graph Attention Networks✓ Link78.87 ± 0.86GAT2017-10-30
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing✓ Link76.39 ± 7.66MixHop2019-04-30
Revisiting Heterophily For Graph Neural Networks✓ Link75.41 ± 7.18 GAT+JK2022-10-14
Geom-GCN: Geometric Graph Convolutional Networks✓ Link67.57Geom-GCN*2020-02-13