OpenCodePapers

node-classification-on-cora-60-20-20-random

Node Classification
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCode1:1 AccuracyModelNameReleaseDate
GNNDLD: Graph Neural Network with Directional Label Distribution92.99 ±0.9GNNDLD2024-02-26
Revisiting Heterophily For Graph Neural Networks✓ Link89.75 ± 1.16ACM-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.59 ± 1.58ACM-Snowball-32022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.52 ± 0.43GAT+JK2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.47 ± 1.08ACMII-GCN++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.36 ± 1.26ACMII-Snowball-32022-10-14
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks✓ Link89.33 ± 1.3Snowball-32019-06-05
Revisiting Heterophily For Graph Neural Networks✓ Link89.33 ± 0.81ACM-GCN++2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.18 ± 1.11ACMII-GCN+2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.1 ± 1.61ACM-GCNII2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.00 ± 1.35ACM-GCNII*2022-10-14
Revisiting Heterophily For Graph Neural Networks✓ Link89.00 ± 0.72ACMII-GCN2022-10-14
Simple and Deep Graph Convolutional Networks✓ Link88.98 ± 1.33GCNII2020-07-04
Revisiting Heterophily For Graph Neural Networks✓ Link88.95 ± 1.04ACMII-Snowball-22022-10-14
Simple and Deep Graph Convolutional Networks✓ Link88.93 ± 1.37GCNII*2020-07-04
Beyond Low-frequency Information in Graph Convolutional Networks✓ Link88.85 ± 1.36FAGCN2021-01-04
Revisiting Heterophily For Graph Neural Networks✓ Link88.83 ± 1.49ACM-Snowball-22022-10-14
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks✓ Link88.64 ± 1.15Snowball-22019-06-05
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation✓ Link88.52 ± 0.95BernNet2021-06-21
Semi-Supervised Classification with Graph Convolutional Networks✓ Link87.78 ± 0.96GCN2016-09-09
Revisiting Heterophily For Graph Neural Networks✓ Link87.64 ± 0.99ACM-SGC-22022-10-14
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs✓ Link87.52 ± 0.61H2GCN2020-06-20
007: Democratically Finding The Cause of Packet Drops✓ Link86.90 ± 1.51GCN+JK2018-02-20
Revisiting Heterophily For Graph Neural Networks✓ Link86.63 ± 1.13ACM-SGC-12022-10-14
Inductive Representation Learning on Large Graphs✓ Link86.58 ± 0.26GraphSAGE2017-06-07
Simplifying Graph Convolutional Networks✓ Link85.48 ± 1.48SGC-22019-02-19
Geom-GCN: Geometric Graph Convolutional Networks✓ Link85.27Geom-GCN*2020-02-13
Simplifying Graph Convolutional Networks✓ Link85.12 ± 1.64SGC-12019-02-19
Adaptive Universal Generalized PageRank Graph Neural Network✓ Link79.51 ± 0.36GPRGNN2020-06-14
Predict then Propagate: Graph Neural Networks meet Personalized PageRank✓ Link79.41 ± 0.38APPNP2018-10-14
Graph Attention Networks✓ Link76.70 ± 0.42GAT2017-10-30
Revisiting Heterophily For Graph Neural Networks✓ Link76.44 ± 0.30MLP-22022-10-14
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing✓ Link65.65 ± 11.31MixHop2019-04-30