OpenCodePapers

natural-language-understanding-on-lexglue

Natural Language Understanding
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeECtHR Task AECtHR Task BSCOTUSEUR-LEXLEDGARUNFAIR-ToSCaseHOLDModelNameReleaseDate
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link71.4 / 64.087.6 / 77.870.5 / 60.971.6 / 55.687.7 / 82.287.5 / 81.070.7BERT2021-10-03
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link71.2 / 64.688.0 / 77.276.2 / 65.872.2 / 56.288.1 / 82.788.6 / 82.375.1Legal-BERT2021-10-03
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link71.2 / 64.288.0 / 77.576.4 / 66.271.0 / 55.988.0 / 82.388.3 / 81.075.6CaseLaw-BERT2021-10-03
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link70.5 / 63.888.1 / 76.671.7 / 61.471.8 / 56.687.7 / 82.187.7 / 80.270.4BigBird2021-10-03
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link69.6 / 62.488.0 / 77.872.2 / 62.571.9 / 56.787.7 / 82.387.7 / 80.172.0Longformer2021-10-03
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link69.5 / 60.787.2 / 77.370.8 / 61.271.8 / 57.587.9 / 82.187.7 / 81.571.7RoBERTa2021-10-03
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English✓ Link69.1 / 61.287.4 / 77.370.0 / 60.072.3 / 57.287.9 / 82.087.2 / 78.872.1DeBERTa 2021-10-03
The Unreasonable Effectiveness of the Baseline: Discussing SVMs in Legal Text Classification66.3 / 55.076.0 / 65.474.4 / 64.565.7 / 49.088.0 / 82.6Optimised SVM Baseline2021-09-15