Category-Wise Fine-Tuning for Image Multi-label Classification with Partial Labels | ✓ Link | 0.933 | | CFT (ensemble) Macao Polytechnic University | 2023-11-27 |
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification | ✓ Link | 0.930 | 2.800 | DeepAUC-v1 | 2020-12-06 |
Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels | ✓ Link | 0.930 | 2.600 | Hierarchical-Learning-V1 (ensemble) | 2019-11-15 |
[]() | | 0.929 | 2.800 | YWW(ensemble) | |
[]() | | 0.929 | 2.600 | Conditional-Training-LSR | |
Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels | ✓ Link | 0.929 | 2.600 | Hierarchical-Learning-V4 (ensemble) | 2019-11-15 |
[]() | | 0.929 | 2.600 | Conditional-Training-LSR-V1 | |
[]() | | 0.929 | 2.600 | Hierarchical-Learning-V0 (ensemble) | |
[]() | | 0.928 | 2.600 | Multi-Stage-Learning-CNN-V3 (ensemble) | |
[]() | | 0.928 | 2.600 | DeepCNNsGM(ensemble) | |
[]() | | 0.927 | 3.000 | inisis | |
[]() | | 0.927 | 2.600 | DeepCNNs(ensemble) | |
[]() | | 0.927 | 2.600 | SenseXDR | |
[]() | | 0.927 | 2.600 | ihil (ensemble) | |
[]() | | 0.926 | 3.000 | JF aboy ensemble_V2 JF HEALTHCARE https://github.com/deadpoppy/CheXpert-Challeng | |
[]() | | 0.926 | 2.600 | DRNet (ensemble) | |
[]() | | 0.926 | 2.600 | yw | |
Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-rays | | 0.926 | 2.600 | Anatomy-XNet-V1 | 2021-06-10 |
[]() | | 0.925 | 2.400 | hoanganh_VB_ensemble3 | |
[]() | | 0.925 | 2.400 | alimebkovk | |
[]() | | 0.924 | 2.600 | uest | |
[]() | | 0.924 | 2.400 | Hoang_VB_ensemble31_v | |
[]() | | 0.924 | 2.400 | tedtt | |
[]() | | 0.924 | 2.400 | as-hust-v3 | |
[]() | | 0.924 | 2.400 | hoanganh_VB_VN | |
[]() | | 0.924 | 2.400 | Hierarchical-CNN-Ensemble-V1 (ensemble) | |
[]() | | 0.923 | 2.600 | DE_APR ensemble ltt | |
[]() | | 0.923 | 2.600 | DE_APR_N ensemble ltt | |
[]() | | 0.923 | 2.600 | Multi-Stage-Learning-CNN-V2 (ensemble) | |
[]() | | 0.923 | 2.600 | Weighted-CNN(ensemble) | |
[]() | | 0.923 | 2.400 | hoanganhcnu_ensemble27_v | |
[]() | | 0.923 | 2.400 | YJ&&YWW :https://github.com/inisis/chexper | |
[]() | | 0.923 | 2.400 | as-hust-v1 | |
[]() | | 0.923 | 2.400 | Maxium (ensemble) | |
[]() | | 0.922 | 2.800 | as-hust-v2 | |
[]() | | 0.922 | 2.400 | Average-CNN(ensemble) | |
[]() | | 0.922 | 2.400 | MaxAUC | |
[]() | | 0.921 | 2.600 | zjr(ensembel) | |
[]() | | 0.921 | 2.400 | SuperCNNv3 | |
[]() | | 0.921 | 2.400 | hyc | |
[]() | | 0.921 | 2.400 | hoangnguyenkcv1 | |
[]() | | 0.920 | 2.600 | {"submit_id": "0x3c7b0af1b5784c159daf259c58543aa3", "predict_id": "0x67b23473183f4f43afa3b37edbc5d7fe", "submitter_id": "0x30db016ad564455ba055eb7f7f4402ac" | |
[]() | | 0.920 | 2.400 | HOANG_VB_VN_2 | |
[]() | | 0.919 | 2.600 | BDNB | |
[]() | | 0.919 | 2.600 | JF Coolver ensemble | |
[]() | | 0.919 | 2.400 | thang ensemble colo | |
[]() | | 0.919 | 2.400 | hoangnn9 ensemble VBV | |
[]() | | 0.919 | 2.400 | JF aboy ensemble_V1 JF HEALTHCARE https://github.com/deadpoppy/CheXpert-Challeng | |
[]() | | 0.919 | 2.200 | {"submit_id": "0x33aeb0f2525e482a886196c273bdf1ba", "predict_id": "0xff2f60907da8440d98ff17f0af749535", "submitter_id": "0x0b382a226d4548c9b441f19b1907fe0f" | |
[]() | | 0.919 | 2.200 | brian-baseline-v2 | |
[]() | | 0.918 | 2.600 | DE_JUN4_RS_EN ensemble LTT | |
[]() | | 0.918 | 2.600 | Mehdi_You (ensemble) | |
Category-Wise Fine-Tuning for Image Multi-label Classification with Partial Labels | ✓ Link | 0.918 | 2.600 | A Good Model (single model) Macao Polytechnic University | 2023-11-27 |
[]() | | 0.918 | 2.600 | A Good Model (single model) | |
Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-rays | | 0.917 | 2.600 | Anatomy-XNet (ensemble) | 2021-06-10 |
[]() | | 0.917 | 2.400 | Ensemble_v2 | |
[]() | | 0.917 | 2.200 | Deep-CNNs-V1 | |
[]() | | 0.917 | 2.200 | vdn6 ensemble ltt | |
[]() | | 0.917 | 2.200 | Overfit ensemble OTH-A | |
[]() | | 0.917 | 2.000 | thangbk(ensemble) | |
[]() | | 0.916 | 2.600 | desmond | |
[]() | | 0.916 | 2.600 | DE_JUN1_RS_EN ensemble LTT | |
[]() | | 0.916 | 2.400 | DE_JUN3_RS_EN ensemble LTT | |
[]() | | 0.916 | 2.400 | {"submit_id": "0x57dc2989f0474ca095d0841df09cfb18", "predict_id": "0xd43bcf7d4c9b467894db2b274b18794e", "submitter_id": "0x30db016ad564455ba055eb7f7f4402ac" | |
[]() | | 0.916 | 2.400 | ATT-AW-v1 | |
[]() | | 0.916 | 2.200 | {"submit_id": "0xeb9c9e79ed9e4410a2a37d62322f4585", "predict_id": "0x735b718280b14e83895decbc31641f87", "submitter_id": "0x30db016ad564455ba055eb7f7f4402ac" | |
[]() | | 0.916 | 2.200 | Multi-Stage-Learning-CNN-V0 | |
[]() | | 0.915 | 2.600 | TGNB | |
[]() | | 0.915 | 2.400 | ensemble SN | |
[]() | | 0.915 | 2.400 | zhangjingyan | |
[]() | | 0.915 | 2.200 | Deadpoppy Ensemble | |
[]() | | 0.915 | 2.200 | hoangnguyenkcv-ensemble28 | |
[]() | | 0.914 | 2.600 | DE_JUN2_RS_EN ensemble LTT | |
[]() | | 0.914 | 2.400 | GRNB | |
[]() | | 0.914 | 2.000 | Deep-CNNs (ensemble) | |
[]() | | 0.913 | 2.200 | Sky-Model | |
[]() | | 0.913 | 2.200 | JF Deadpoppy | |
[]() | | 0.913 | 2.000 | YWW-YJ:https://github.com/inisis/chexper | |
[]() | | 0.912 | 2.200 | zjy | |
[]() | | 0.912 | 2.000 | WL_Baseline (ensemble) | |
[]() | | 0.911 | 2.200 | KCV-CNN-ensemble-CN | |
[]() | | 0.911 | 2.200 | songta | |
[]() | | 0.911 | 2.200 | bhtrun | |
[]() | | 0.911 | 2.200 | anatomy_xnet_v1 (single model) | |
[]() | | 0.911 | 2.000 | DS_APR_N single model ltt | |
[]() | | 0.911 | 2.000 | DS_APR single model LTT | |
[]() | | 0.911 | 2.000 | brian-baseline | |
[]() | | 0.910 | 2.200 | ensemble SNU | |
[]() | | 0.909 | 2.200 | HinaNetV2 (ensemble) | |
[]() | | 0.909 | 2.000 | KD-Prune10 (Single model) | |
[]() | | 0.909 | 1.800 | G_Mans_ensembl | |
Masks and Manuscripts: Advancing Medical Pre-training with End-to-End Masking and Narrative Structuring | | 0.909 | | Masks and Manuscripts | 2024-07-23 |
[]() | | 0.908 | 2.000 | guran_ri | |
[]() | | 0.908 | 1.800 | vdnnn (ensemble) | |
[]() | | 0.908 | 1.800 | BAAZT | |
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison | ✓ Link | 0.907 | 1.800 | Stanford Baseline (ensemble) | 2019-01-21 |
[]() | | 0.907 | 1.600 | vbn (single model) | |
[]() | | 0.907 | 1.600 | muti_base (ensemble) | |
[]() | | 0.907 | 1.400 | Z_Ensemble_V | |
[]() | | 0.906 | 1.600 | {ForwardModelEnsembleCorrected} (ensemble) | |
[]() | | 0.906 | 1.600 | LBC-v2 (ensemble) | |
[]() | | 0.906 | 1.600 | LBC-v2 | |
Image Projective Transformation Rectification with Synthetic Data for Smartphone-captured Chest X-ray Photos Classification | ✓ Link | 0.906 | 1.600 | LBC-v2 (ensemble) | 2022-10-12 |
[]() | | 0.905 | 2.000 | Multi-CNN | |
[]() | | 0.905 | 1.800 | hy | |
[]() | | 0.905 | 1.600 | ForwardMECorrectedFull (ensemble) | |
[]() | | 0.904 | 1.200 | JustAnotherDensenet | |
[]() | | 0.903 | 1.600 | Orlando (single model) | |
[]() | | 0.902 | 2.000 | Max (single model) | |
[]() | | 0.902 | 1.800 | DeepLungsEnsemble | |
[]() | | 0.901 | 1.600 | Ensemble_v1 | |
[]() | | 0.901 | 1.400 | Nakajima_ayas | |
[]() | | 0.900 | 1.600 | MLC11 NotDense (single-model) | |
[]() | | 0.900 | 1.200 | vn_2 single_model ltt | |
[]() | | 0.899 | 2.000 | {AVG_MAX}(ensemble) | |
[]() | | 0.899 | 1.800 | Z_Ensemble_ | |
[]() | | 0.899 | 1.600 | llllldz | |
[]() | | 0.899 | 1.600 | DiseaseNet Samg2003 single model, UIUC, http://sambhavgupta.com | |
[]() | | 0.899 | 1.600 | DiseaseNet Samg2003 single model, DPS RKP, http://sambhavgupta.co | |
[]() | | 0.899 | 1.400 | LBC-v0 | |
[]() | | 0.899 | 1.400 | LBC-v0 (ensemble) | |
Image Projective Transformation Rectification with Synthetic Data for Smartphone-captured Chest X-ray Photos Classification | ✓ Link | 0.899 | 1.400 | LBC-v0 (ensemble) | 2022-10-12 |
[]() | | 0.898 | 1.800 | BUA | |
[]() | | 0.898 | 1.400 | G_Mans_v2 (single model): LibAUC + coat_mini | |
[]() | | 0.898 | 1.200 | ljc226 | |
[]() | | 0.897 | 1.600 | ForwardModelEnsemble (ensemble) | |
[]() | | 0.897 | 1.600 | NewTrickTest (ensemble) | |
[]() | | 0.897 | 1.200 | AccidentNet v1 (single model) | |
[]() | | 0.896 | 1.600 | ylz-v01 | |
[]() | | 0.896 | 1.400 | ldz | |
[]() | | 0.896 | 1.400 | Densenet | |
[]() | | 0.896 | 1.400 | Stellarium-CheXpert-Local (single model) | |
[]() | | 0.896 | 1.400 | Stellarium-CheXpert-Local | |
Image Projective Transformation Rectification with Synthetic Data for Smartphone-captured Chest X-ray Photos Classification | ✓ Link | 0.896 | 1.400 | Stellarium-CheXpert-Local | 2022-10-12 |
[]() | | 0.895 | 1.800 | Deadpoppy Single | |
[]() | | 0.895 | 1.600 | adoudo | |
[]() | | 0.895 | 1.400 | {koala-large} (single model) | |
[]() | | 0.895 | 1.200 | MVD121 | |
[]() | | 0.895 | 1.000 | hust(single model) | |
[]() | | 0.894 | 1.600 | MM1 | |
[]() | | 0.894 | 1.600 | hycN | |
[]() | | 0.894 | 1.600 | zhujier | |
[]() | | 0.894 | 1.000 | U-Random-Ind (single) | |
[]() | | 0.892 | 1.600 | HybridModelEnsemble (ensemble) | |
[]() | | 0.891 | 1.200 | MVD121-320 | |
[]() | | 0.891 | 1.000 | ylz-v02 | |
[]() | | 0.890 | 1.000 | pause | |
[]() | | 0.890 | 1.000 | Overfit ensemble OT | |
[]() | | 0.890 | 0.800 | Haruka_Hamasak | |
[]() | | 0.889 | 1.400 | DenseNet169 at 320x320 (single model) | |
[]() | | 0.889 | 1.400 | LR-baseline (ensemble) | |
[]() | | 0.888 | 1.000 | DataAugFTW (single model) | |
[]() | | 0.888 | 1.000 | {koala} (single model) | |
[]() | | 0.887 | 1.200 | Xception (single model) | |
[]() | | 0.887 | 1.200 | Stellarium (single model) | |
[]() | | 0.887 | 1.200 | Stellarium | |
[]() | | 0.887 | 1.200 | pm_rn50_0.15pp | |
[]() | | 0.886 | 1.200 | baseline3 | |
[]() | | 0.886 | 1.000 | PrateekMunja | |
[]() | | 0.886 | 0.800 | MVR50 | |
[]() | | 0.884 | 1.600 | MNet-Fix (Single Model) | |
[]() | | 0.884 | 0.800 | Coolver XH | |
[]() | | 0.883 | 1.200 | Naive Densenet | |
[]() | | 0.883 | 0.600 | mhealth_buet (single model) | |
[]() | | 0.882 | 0.800 | Aoitori (single model) | |
[]() | | 0.882 | 0.600 | {chexpert-classifier}(single model) | |
[]() | | 0.882 | 0.400 | DearBrave (single model) | |
[]() | | 0.881 | 1.000 | AccidentNet V2 (single model) | |
[]() | | 0.880 | 1.200 | {densenet} (single model) | |
[]() | | 0.879 | 0.600 | Yoake (single model) | |
[]() | | 0.878 | 0.600 | MLC11 Baseline (single-model) | |
[]() | | 0.876 | 1.200 | DenseNet | |
[]() | | 0.876 | 1.000 | HCL1 (single model) | |
[]() | | 0.875 | 1.200 | MLGCN (single model) | |
[]() | | 0.875 | 1.000 | GCN_densenet121-single mode | |
[]() | | 0.873 | 0.800 | GreenTeaCalpis (single model) | |
[]() | | 0.873 | 0.400 | Multi-CNN (ensemble) | |
[]() | | 0.871 | 0.600 | BASELINE ResNet50 | |
[]() | | 0.868 | 0.800 | baseline1 (single model) | |
[]() | | 0.868 | 0.600 | Baseline DenseNet161 | |
[]() | | 0.865 | 0.600 | DSENet | |
[]() | | 0.863 | 0.800 | Densenet-Basic Single NUS | |
[]() | | 0.862 | 0.800 | KD_Mobilenet (single model) | |
[]() | | 0.861 | 1.000 | {GoDense} (single model) | |
[]() | | 0.861 | 0.400 | inceptionv3_single_NN | |
[]() | | 0.860 | 0.800 | MLKD (Single model) | |
[]() | | 0.860 | 0.600 | BASELINE Acorn | |
[]() | | 0.859 | 0.600 | ErrorNet (single model) | |
[]() | | 0.859 | 0.600 | SleepNet (single model) | |
[]() | | 0.858 | 1.000 | baseline2 | |
[]() | | 0.858 | 0.000 | UMLS_CLIP (single model) | |
[]() | | 0.854 | 0.800 | haw02 (single model) | |
[]() | | 0.853 | 0.000 | CombinedTrainDenseNet121 (single model) | |
[]() | | 0.851 | 0.400 | rayOfLightSingle (Single Model) | |
[]() | | 0.850 | 0.600 | Model_Team_34 (single model) | |
[]() | | 0.850 | 0.400 | Test model habbe | |
[]() | | 0.848 | 0.600 | model2_DenseNet121 | |
[]() | | 0.848 | 0.200 | Baseline | |
[]() | | 0.844 | 0.400 | HinaNet (single model) | |
[]() | | 0.842 | 0.200 | singlehead_models (single model combined) | |
[]() | | 0.840 | 0.400 | mwowra-conditional (single) | |
[]() | | 0.838 | 0.400 | multihead_model (one model for all pathologies) | |
[]() | | 0.837 | 0.200 | mobilenet (single model) | |
[]() | | 0.835 | 0.000 | Grp12BigCNN | |
[]() | | 0.834 | 0.400 | MLC9_Densenet (single model) | |
[]() | | 0.830 | 0.200 | Grp12v2USup2OSamp (ensemble) | |
[]() | | 0.822 | 0.000 | DNET121-single | |
CheXclusion: Fairness gaps in deep chest X-ray classifiers | ✓ Link | 0.805 | | DensNet121 | 2020-02-14 |
[]() | | 0.797 | 0.600 | G_Mans_v1 (single model): | |
[]() | | 0.769 | 0.000 | 12ASLv2(single) | |
[]() | | 0.760 | 0.000 | DenseNet121 (single model) | |
[]() | | 0.736 | 0.000 | 12ASLv1(single) | |
[]() | | 0.732 | 0.600 | haw-baseline (single model) | |
[]() | | 0.727 | 0.000 | rayOfLight (ensemble) | |
[]() | | 0.724 | 0.000 | BASELINE DenseNet121 | |
[]() | | 0.618 | 0.200 | Chest-x-ray classification using | |
[]() | | 0.615 | 0.000 | BME_Final_v2 | |
[]() | | 0.606 | 0.000 | {densenet121}{single model | |
[]() | | 0.606 | 0.000 | autobot | |
[]() | | 0.575 | 0.000 | {MLC02_DenseNet121} | |
[]() | | 0.531 | 0.000 | efficiantB5 (single model) | |
[]() | | 0.524 | 0.000 | apalepu1 | |
[]() | | 0.500 | 0.000 | Erdem (single) | |
[]() | | 0.481 | 0.000 | Adalab Standard (Single Model) | |
[]() | | 0.481 | 0.000 | Adalab Standard (single model) | |
[]() | | 0.479 | 0.000 | zeroshot_medclip_baseline (ensemble) | |