OpenCodePapers

link-property-prediction-on-ogbl-collab

Link Property Prediction
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeTest Hits@50Ext. dataValidation Hits@50Number of paramsModelNameReleaseDate
Edge2Node: Reducing Edge Prediction to Node Classification0.9515 ± 0.1410No0.9546 ± 0.1270526851E2N2023-11-06
[]()0.7129 ± 0.0018No0.7385 ± 0.00991064446212HyperFusion
GIDN: A Lightweight Graph Inception Diffusion Network for High-efficient Link Prediction0.7096 ± 0.0055No0.9620 ± 0.004060449025GIDN@YITU2022-10-04
[]()0.7087 ± 0.0033No1.0000 ± 0.000034980864PLNLP + SIGN
Pairwise Learning for Neural Link Prediction✓ Link0.7059 ± 0.0029No1.0000 ± 0.000034980864PLNLP (random walk aug.)2021-12-06
[]()0.7012 ± 0.0016No1.0000 ± 0.000030191104HOP-REC
Global Attention Improves Graph Networks Generalization✓ Link0.6909 ± 0.0055No1.0000 ± 0.000035200656PLNLP+ LRGA2020-06-14
Pairwise Learning for Neural Link Prediction✓ Link0.6872 ± 0.0052No1.0000 ± 0.000035112192PLNLP (val as input)2021-12-06
Reconsidering the Performance of GAE in Link Prediction✓ Link0.6816 ± 0.0041No1.0000 ± 0.0000126669825Refined-GAE2024-11-06
[]()0.6792 ± 0.0074No0.6771 ± 0.0083483363845TopoLink
Simplifying Subgraph Representation Learning for Scalable Link Prediction✓ Link0.6683 ± 0.0030No0.9861 ± 0.00065913025S3GRL (PoS Plus)2023-01-29
[]()0.6636 ± 0.5876No0.6631 ± 0.00213284065ELPH
[]()0.6572 ± 0.0053No0.6621 ± 0.00161184867BUDDY
Edge Proposal Sets for Link Prediction✓ Link0.6548 ± 0.0000No0.9735 ± 0.00000Adamic Adar+Edge Proposal Set2021-06-30
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning✓ Link0.6474 ± 0.0043No0.6495 ± 0.0043501570SEAL-nofeat (val as input)2020-10-30
[]()0.6417 ± 0.0000No0.6349 ± 0.00000Adamic Adar
[]()0.6137 ± 0.0000No0.6036 ± 0.00000Common Neighbor
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning✓ Link0.5471 ± 0.0049No0.6495 ± 0.0043501570SEAL-nofeat2020-10-30
Inductive Representation Learning on Large Graphs✓ Link0.5463 ± 0.0112No0.5688 ± 0.0077460289GraphSAGE (val as input)2017-06-07
Network In Graph Neural Network0.5359 ± 0.0056No0.6281 ± 0.0046591873NGNN + GraphSAGE2021-11-23
Network In Graph Neural Network0.5348 ± 0.0040No0.6273 ± 0.0040428033NGNN + GCN2021-11-23
DeeperGCN: All You Need to Train Deeper GCNs✓ Link0.5273 ± 0.0047No0.6187 ± 0.0045117383DeeperGCN2020-06-13
Global Attention Improves Graph Networks Generalization✓ Link0.5221 ± 0.0072No0.6088 ± 0.00591069489LRGA + GCN2020-06-14
On the effect of the average clustering coefficient on topology-based link prediction in featureless graphs✓ Link0.5050 ± 0.0000No0.6098 ± 0.00000Jaccard Index2025-01-12
DeepWalk: Online Learning of Social Representations✓ Link0.5037 ± 0.0034NoPlease tell us61390187DeepWalk2014-03-26
node2vec: Scalable Feature Learning for Networks✓ Link0.4888 ± 0.0054No0.5703 ± 0.005230322945Node2vec2016-07-03
Inductive Representation Learning on Large Graphs✓ Link0.4810 ± 0.0081No0.5688 ± 0.0077460289GraphSAGE2017-06-07
Semi-Supervised Classification with Graph Convolutional Networks✓ Link0.4714 ± 0.0145No0.5263 ± 0.0115296449GCN (val as input)2016-09-09
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization✓ Link0.4673 ± 0.0164 .VQ-GNN (SAGE-Mean)2021-10-27
Semi-Supervised Classification with Graph Convolutional Networks✓ Link0.4475 ± 0.0107No0.5263 ± 0.0115296449GCN2016-09-09
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization✓ Link0.4316 ± 0.0134VQ-GNN (GCN)2021-10-27
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization✓ Link0.4102 ± 0.0099VQ-GNN (GAT)2021-10-27
Open Graph Benchmark: Datasets for Machine Learning on Graphs✓ Link0.3886 ± 0.0029No0.4896 ± 0.002960514049Matrix Factorization2020-05-02
Inductive Representation Learning on Large Graphs✓ Link460289GraphSAGE (val as input)2017-06-07