OpenCodePapers

link-property-prediction-on-ogbl-citation2

Link Property Prediction
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeExt. dataTest MRRValidation MRRNumber of paramsModelNameReleaseDate
GraphGPT: Graph Learning with Generative Pre-trained Transformers✓ LinkNo0.9305 ± 0.00200.9295 ± 0.0022133096832GraphGPT(d1n30)2023-12-31
Pure Message Passing Can Estimate Common Neighbor for Link Prediction✓ LinkNo0.9072 ± 0.00120.9074 ± 0.0011749757283MPLP2023-09-02
GraphGPT: Graph Learning with Generative Pre-trained Transformers✓ LinkNo0.9055 ± 0.00160.9042 ± 0.001446784128GraphGPT(SMTP)2023-12-31
Circle Feature Graphormer: Can Circle Features Stimulate Graph Transformer?✓ LinkNo0.8997 ± 0.00150.8987 ± 0.0011686253CFG2023-09-11
[]()No0.8957 ± 0.00100.8948 ± 0.0008256802SIEG
Can GNNs Learn Link Heuristics? A Concise Review and Evaluation of Link Prediction Methods✓ LinkNo0.8891 ± 0.00050.8892 ± 0.0005372674GCN + Heuristic Encoding2024-11-22
Network In Graph Neural NetworkNo0.8891 ± 0.00220.8879 ± 0.00221134402NGNN + SEAL2021-11-23
Algorithm and System Co-design for Efficient Subgraph-based Graph Representation Learning✓ LinkNo0.8883 ± 0.00180.8891 ± 0.002179617SUREL2022-02-28
Simplifying Subgraph Representation Learning for Scalable Link Prediction✓ LinkNo0.8814 ± 0.00080.8809 ± 0.0074142275001S3GRL (PoS Plus)2023-01-29
[]()No0.8796 ± 0.00080.8793 ± 0.0008166531BUDDY
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning✓ LinkNo0.8767 ± 0.00320.8757 ± 0.0031260802SEAL2020-10-30
Adaptive Graph Diffusion Networks✓ LinkNo0.8549 ± 0.00290.8556 ± 0.0033306716AGDN w/GraphSAINT2020-12-30
Pairwise Learning for Neural Link Prediction✓ LinkNo0.8492 ± 0.00290.8490 ± 0.0031146514551PLNLP2021-12-06
Semi-Supervised Classification with Graph Convolutional Networks✓ LinkNo0.8474 ± 0.00210.8479 ± 0.0023296449Full-batch GCN2016-09-09
[]()No0.8432 ± 0.00030.8422 ± 0.0002749558528HPE - Pre-trained Initialized
Inductive Representation Learning on Large Graphs✓ LinkNo0.8260 ± 0.00360.8263 ± 0.0033460289Full-batch GraphSAGE2017-06-07
Inductive Representation Learning on Large Graphs✓ LinkNo0.8044 ± 0.00100.8054 ± 0.0009460289NeighborSampling (SAGE aggr)2017-06-07
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks✓ LinkNo0.8004 ± 0.00250.7994 ± 0.0025296449ClusterGCN (GCN aggr)2019-05-20
GraphSAINT: Graph Sampling Based Inductive Learning Method✓ LinkNo0.7985 ± 0.00400.7975 ± 0.0039296449GraphSAINT (GCN aggr)2019-07-10
node2vec: Scalable Feature Learning for Networks✓ LinkNo0.6141 ± 0.00110.6124 ± 0.0011374911105Node2vec2016-07-03
[]()No0.5189 ± 0.00000.5167 ± 0.00000Adamic Adar
Open Graph Benchmark: Datasets for Machine Learning on Graphs✓ LinkNo0.5186 ± 0.04430.5181 ± 0.0436281113505Matrix Factorization2020-05-02
[]()No0.5147 ± 0.00000.5119 ± 0.00000Common Neighbor