OpenCodePapers
kg-to-text-generation-on-webnlg-2-0-1
KG-to-Text Generation
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
Show papers without code
Paper
Code
BLEU
↕
METEOR
↕
ROUGE
↕
FactSpotter
↕
ModelName
ReleaseDate
↕
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
✓ Link
67.08
48.34
99.71
FactT5B
2023-10-25
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
✓ Link
67.08
48.34
99.44
JointGT Baseline
2023-10-25
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
✓ Link
67.04
48.35
99.05
T5B Baseline
2023-10-25
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
✓ Link
66.89
48.19
99.67
FactJointGT
2023-10-25
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
✓ Link
61.01
46.32
73.57
JointGT (T5)
2021-06-19
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
✓ Link
58.66
46.04
73.06
T5
2021-06-19
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
✓ Link
58.55
45.01
72.31
JointGT (BART)
2021-06-19
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
✓ Link
56.65
44.51
70.94
BART
2021-06-19
Handling Rare Items in Data-to-Text Generation
✓ Link
48.0
36.0
65.0
SOTA-NPT
2018-11-01