OpenCodePapers

graph-regression-on-esr2

Graph Regression
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeR2RMSEModelNameReleaseDate
An end-to-end attention-based approach for learning on graphs✓ Link0.697±0.0000.486±0.697ESA (Edge set attention, no positional encodings)2024-02-16
Principal Neighbourhood Aggregation for Graph Nets✓ Link0.696±0.0000.486±0.696PNA2020-04-12
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks✓ Link0.675±0.0000.503±0.675DropGIN2021-11-11
How Powerful are Graph Neural Networks?✓ Link0.668±0.0000.509±0.668GIN2018-10-01
Graph Attention Networks✓ Link0.666±0.0000.510±0.666GAT2017-10-30
How Attentive are Graph Attention Networks?✓ Link0.655±0.0000.518±0.655GATv22021-05-30
Semi-Supervised Classification with Graph Convolutional Networks✓ Link0.642±0.0000.528±0.642GCN2016-09-09
Pure Transformers are Powerful Graph Learners✓ Link0.641±0.0000.529±0.641TokenGT2022-07-06
Do Transformers Really Perform Bad for Graph Representation?✓ LinkOOMOOMGraphormer2021-06-09