OpenCodePapers

graph-property-prediction-on-ogbg-ppa

Graph Property Prediction
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeExt. dataTest AccuracyValidation AccuracyNumber of paramsModelNameReleaseDate
Unlocking the Potential of Classic GNNs for Graph-level Tasks: Simple Architectures Meet Excellence✓ LinkNo0.8258 ± 0.00550.7815 ± 0.00435547557GatedGCN+2025-02-13
[]()No0.8201 ± 0.00190.7720 ± 0.002316346166PAS+F2GNN
[]()No0.8140 ± 0.00280.7811 ± 0.00123758642ExpC*+bag of tricks
Unlocking the Potential of Classic GNNs for Graph-level Tasks: Simple Architectures Meet Excellence✓ LinkNo0.8107 ± 0.00530.7786 ± 0.00958173605GIN+2025-02-13
Unlocking the Potential of Classic GNNs for Graph-level Tasks: Simple Architectures Meet Excellence✓ LinkNo0.8077 ± 0.00410.7586 ± 0.00325549605GCN+2025-02-13
Recipe for a General, Powerful, Scalable Graph Transformer✓ LinkNo0.80150.7556 ± 0.00273434533GPS2022-05-25
Breaking the Expressive Bottlenecks of Graph Neural Networks✓ LinkNo0.7976 ± 0.00720.7518 ± 0.00801369397ExpC2020-12-14
[]()No0.7828 ± 0.00240.7523 ± 0.00283717160PAS
Robust Optimization as Data Augmentation for Large-scale Graphs✓ LinkNo0.7752 ± 0.00690.7484 ± 0.00522336421DeeperGCN+FLAG2020-10-19
DeeperGCN: All You Need to Train Deeper GCNs✓ LinkNo0.7712 ± 0.00710.7313 ± 0.00782336421DeeperGCN2020-06-13
[]()No0.7432 ± 0.00330.6989 ± 0.00374006704GC-T+MCL(6.0)
Robust Optimization as Data Augmentation for Large-scale Graphs✓ LinkNo0.7245 ± 0.01140.6789 ± 0.00793288042GIN+virtual node+FLAG2020-10-19
How Powerful are Graph Neural Networks?✓ LinkNo0.7037 ± 0.01070.6678 ± 0.01053288042GIN+virtual node2018-10-01
Robust Optimization as Data Augmentation for Large-scale Graphs✓ LinkNo0.6944 ± 0.00520.6638 ± 0.00551930537GCN+virtual node+FLAG2020-10-19
Robust Optimization as Data Augmentation for Large-scale Graphs✓ LinkNo0.6905 ± 0.00920.6465 ± 0.00701836942GIN+FLAG2020-10-19
How Powerful are Graph Neural Networks?✓ LinkNo0.6892 ± 0.01000.6562 ± 0.01071836942GIN2018-10-01
Semi-Supervised Classification with Graph Convolutional Networks✓ LinkNo0.6857 ± 0.00610.6511 ± 0.00481930537GCN+virtual node2016-09-09
Semi-Supervised Classification with Graph Convolutional Networks✓ LinkNo0.6839 ± 0.00840.6497 ± 0.0034479437GCN2016-09-09