OpenCodePapers

graph-property-prediction-on-ogbg-code2

Graph Property Prediction
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeTest F1 scoreExt. dataValidation F1 scoreNumber of paramsModelNameReleaseDate
Transformers Meet Directed Graphs✓ Link0.2222 ± 0.0010No0.2044 ± 0.002014378069SAT++ with Magnetic Laplacian2023-01-31
[]()0.2222 ± 0.0032No0.2044 ± 0.002014378069SAT++ with Magnetic Laplacian
Transformers over Directed Acyclic Graphs✓ Link0.2018 ± 0.0021No0.1846 ± 0.001014952882DAGformer2022-10-24
Structure-Aware Transformer for Graph Representation Learning✓ Link0.1937 ± 0.0028No0.1773 ± 0.002315734000SAT2022-02-07
Unlocking the Potential of Classic GNNs for Graph-level Tasks: Simple Architectures Meet Excellence✓ Link0.1896 ± 0.00240.1742 ± 0.0027GatedGCN+2025-02-13
Recipe for a General, Powerful, Scalable Graph Transformer✓ Link0.1894No0.1739 ± 0.00112454066GPS2022-05-25
[]()0.1830 ± 0.0024No0.1661 ± 0.00129053246GraphTrans (GCN-Virtual)
[]()0.1770 ± 0.0012No0.1631 ± 0.009063684290GMAN+bag of tricks
[]()0.1751 ± 0.0049No0.1607 ± 0.004035246814DAGNN
Directed Acyclic Graph Neural Networks✓ Link0.1751 ± 0.00490.1607 ± 0.0040DAGNN2021-01-20
[]()0.1751 ± 0.0015No0.1599 ± 0.00097563746GraphTrans (GCN)
Do We Need Anisotropic Graph Neural Networks?✓ Link0.1595 ± 0.0019No0.1464 ± 0.002110986002EGC-M (No Edge Features)2021-04-03
Semi-Supervised Classification with Graph Convolutional Networks✓ Link0.1595 ± 0.0018No0.1461 ± 0.001312484310GCN+virtual node2016-09-09
How Powerful are Graph Neural Networks?✓ Link0.1581 ± 0.0026No0.1439 ± 0.002013841815GIN+virtual node2018-10-01
Do We Need Anisotropic Graph Neural Networks?✓ Link0.1570 ± 0.0032No0.1453 ± 0.002510992050PNA (No Edge Features)2021-04-03
Graph Attention Networks✓ Link0.1569 ± 0.0010No0.1442 ± 0.001711030210GAT2017-10-30
Do We Need Anisotropic Graph Neural Networks?✓ Link0.1552 ± 0.0022No0.1441 ± 0.001610971506MPNN-Max (No Edge Features)2021-04-03
Do We Need Anisotropic Graph Neural Networks?✓ Link0.1528 ± 0.0025No0.1427 ± 0.002011156530EGC-S (No Edge Features)2021-04-03
Semi-Supervised Classification with Graph Convolutional Networks✓ Link0.1507 ± 0.0018No0.1399 ± 0.001711033210GCN2016-09-09
How Powerful are Graph Neural Networks?✓ Link0.1495 ± 0.0023No0.1376 ± 0.001612390715GIN2018-10-01
Hierarchical Graph Representation Learning with Differentiable Pooling✓ Link0.1401 ± 0.0012No0.1405 ± 0.001210095826DiffPool w/ graphSAGE2018-06-22