OpenCodePapers

formation-energy-on-qm9

Atomistic DescriptionFormation Energy
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
PaperCodeMAEModelNameReleaseDate
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials✓ Link0.09TensorNet2023-06-10
Wigner kernels: body-ordered equivariant machine learning without a basis0.100 ± 0.003Wigner Kernels2023-03-07
A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems✓ Link0.136PAMNet2023-11-19
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures✓ Link0.137MXMNet2020-11-15
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties✓ Link0.138HMGNN2020-09-26
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges✓ Link0.14PhysNet-ens52019-02-22
Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning0.141DeepMoleNet2020-06-30
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability✓ Link0.167xGPR -- Gaussian process, graph convolution kernel2023-02-07
Directional Message Passing for Molecular Graphs✓ Link0.185DimeNet2020-03-06
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges✓ Link0.19PhysNet2019-02-22
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals✓ Link0.21MEGNet-Full2018-12-12
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials✓ Link0.242SchNet-edge-update2018-06-08
Hierarchical modeling of molecular energies using a deep neural network0.256HIP-NN2017-09-29
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals✓ Link0.28MEGNet-simple2018-12-12
Atomistic Line Graph Neural Network for Improved Materials Property Predictions✓ Link0.30ALIGNN2021-06-03
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials✓ Link0.314SchNet2018-06-08
Neural Message Passing for Quantum Chemistry✓ Link0.49MPNN2017-04-04
Machine learning prediction errors better than DFT accuracy0.58HDAD+KRR2017-02-17