OpenCodePapers
formation-energy-on-qm9
Atomistic Description
Formation Energy
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
Show papers without code
Paper
Code
MAE
↕
ModelName
ReleaseDate
↕
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
✓ Link
0.09
TensorNet
2023-06-10
Wigner kernels: body-ordered equivariant machine learning without a basis
0.100 ± 0.003
Wigner Kernels
2023-03-07
A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems
✓ Link
0.136
PAMNet
2023-11-19
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures
✓ Link
0.137
MXMNet
2020-11-15
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
✓ Link
0.138
HMGNN
2020-09-26
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
✓ Link
0.14
PhysNet-ens5
2019-02-22
Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning
0.141
DeepMoleNet
2020-06-30
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability
✓ Link
0.167
xGPR -- Gaussian process, graph convolution kernel
2023-02-07
Directional Message Passing for Molecular Graphs
✓ Link
0.185
DimeNet
2020-03-06
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
✓ Link
0.19
PhysNet
2019-02-22
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
✓ Link
0.21
MEGNet-Full
2018-12-12
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
✓ Link
0.242
SchNet-edge-update
2018-06-08
Hierarchical modeling of molecular energies using a deep neural network
0.256
HIP-NN
2017-09-29
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
✓ Link
0.28
MEGNet-simple
2018-12-12
Atomistic Line Graph Neural Network for Improved Materials Property Predictions
✓ Link
0.30
ALIGNN
2021-06-03
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
✓ Link
0.314
SchNet
2018-06-08
Neural Message Passing for Quantum Chemistry
✓ Link
0.49
MPNN
2017-04-04
Machine learning prediction errors better than DFT accuracy
0.58
HDAD+KRR
2017-02-17