Paper | Code | MRR 1p | MRR 2i | MRR 2p | MRR 2u | MRR 3i | MRR 3p | MRR ip | MRR pi | MRR up | ModelName | ReleaseDate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization | ✓ Link | 0.607 | 0.425 | 0.241 | 0.204 | 0.506 | 0.216 | 0.265 | 0.313 | 0.179 | QTO | 2022-12-19 |
Complex Query Answering with Neural Link Predictors | ✓ Link | 0.604 | 0.436 | 0.256 | CQD | 2020-11-06 | ||||||
Adapting Neural Link Predictors for Data-Efficient Complex Query Answering | 0.604 | 0.434 | 0.229 | 0.200 | 0.526 | 0.167 | 0.264 | 0.321 | 0.170 | CQDA | 2023-01-29 | |
Neural-Symbolic Models for Logical Queries on Knowledge Graphs | ✓ Link | 0.533 | 0.424 | 0.189 | 0.159 | 0.525 | 0.149 | 0.189 | 0.308 | 0.126 | GNN-QE | 2022-05-16 |
Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs | ✓ Link | 0.53 | 0.376 | 0.13 | 0.122 | 0.475 | 0.114 | 0.143 | 0.241 | 0.085 | BetaE | 2020-10-22 |
Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings | ✓ Link | 0.422 | 0.333 | 0.140 | 0.113 | 0.445 | 0.112 | 0.168 | 0.224 | 0.1103 | Q2B | 2020-02-14 |