OpenCodePapers
adversarial-defense-on-cifar-10
Adversarial Defense
Dataset Link
Results over time
Click legend items to toggle metrics. Hover points for model names.
Leaderboard
Show papers without code
Paper
Code
Accuracy
↕
Attack: AutoAttack
↕
Robust Accuracy
↕
ModelName
ReleaseDate
↕
Language Guided Adversarial Purification
✓ Link
90.03
71.68
WRN-28-10
2023-09-19
Robust Classification via a Single Diffusion Model
✓ Link
89.85
75.67
Diffusion Classifier
2023-05-24
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
✓ Link
84.3
82.6
Stochastic-LWTA/PGD/WideResNet-34-10
2021-12-05
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
✓ Link
83.4
Ours (Stochastic-LWTA/PGD/WideResNet-34-5)
2021-12-05
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
✓ Link
81.87
74.71
Ours (Stochastic-LWTA/PGD/WideResNet-34-1)
2021-12-05
Enhancing Robust Representation in Adversarial Training: Alignment and Exclusion Criteria
✓ Link
81.70
59.70
82.96
ResNet18 (TRADES-ANCRA/PGD-40)
2023-10-05
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
✓ Link
46.7
PCL (against PGD, white box)
2019-04-01
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
✓ Link
81.22
Stochastic-LWTA/PGD/WideResNet-34-5
2021-12-05